차원축소
차원 축소 개념 차원이(feature) 증가하면 데이터 포인트 간 거리가 기하급수적으로 멀어짐 (=희소한 구조) 만약 수백 개 이상 피처로 구성된 데이터 세트가 있다면 적은 차원에서 학습된 모델보다 예측 신뢰도 떨어짐 또한 개별 피처간 상관관계가 높을 가능성이 큼 선형 모델에서 입력 변수 간 상관관계가 높은 경우 다중 공산성 문제가 발생하며 결국, 모델 예측 성능이 저하됨 이러한 문제들을 해결하기 위해, 많은 다차원 피처를 줄이는 것이 차원 축소임 차원 축소 종류 2가지 피처 선택(feature selection) & 피처 추출(feature extraction) 피처 선택 특정 피처에 종속성이 강한 불필요한 피처 제거 즉, 특징을 잘 나타내는 주요 피처만 선택 피처 추출 기존 피처를 저차원의 중요 피처..
2023.12.30